

CTU in Prague Faculty of Civil Engineering Department of Building Structures

Restoration of load-bearing structures

Buštěhrad

Presentation was created with the kind support of Ministry of Education Grant FRVŠ 2960/2011.

History of the object

different parts of the castle by the time construction

Description of the object

- Bustehrad castle in the Kladno surroundings
- look of the facade of the castle

Description of the object

Description of the object

Description of the defects

- structural demages
 - arch failure mechanism
 - scaling and spalling
 - diagonal cracs
 - efflorescence

Description of the defects

- architectural demages
 - brick blistering, exfoliation
 - erosion
 - missing elements

column 1x0,6 m, height 1,5 m (ground to springing)

Technical analysis of structures, defects

- material composition
 - composite masonry (opuka + bricks)
 - heterogeneous courses, poor interlocking
- visible demage
 - plaster loss, surface deterioration, reduction of cross section at base

Technical analysis of structures, defects

- cracs
 - in mortar 1
 - at corner of section (2)
 - in brick (3)
 - in opuka 4

2

(4)

- cracking
 - vertical cracs lenght up to 80 cm
 - most of cracs active
 - severe cracking through mortat joints
 - concentrated at reduced section of base

- equipment for inspection in-situ
 - folding rule (2m)
 - tachymeter Leica TCR 303
 - infrared thermography camera
 - Schmidt-hammer type PT
 - crack meter
 - Moisture monitor M49

- Schmidt-hammer type PT
- opuka
 - $B1 = 3.6 \text{ N/mm}^2$
 - $B2 = 22.0 \text{ N/mm}^2$
 - \rightarrow Lab = 30.24 N/mm²
 - Big difference between measured values
- brick
 - $B3 = 18.2 \text{ N/mm}^2$
 - $B4 = 14.3 \text{ N/mm}^2$
 - \blacktriangleright Lab = 14.34 N/mm²
 - compressive strength matches relatively well to the laboratory tests

- laboratory tests compression tests
 - determine the compressive strength of the masonry (brick, opuka)
 - selecting of 4-5 samples for each stone type
 - cutting out cylindrical specimen (d=35mm, h=40mm)
 - perform the compression test until the failure of the material (cracking)
 - results for the compressive strength and the Young's modulus

- laboratory tests results
 - Characteristic strength is ≈ 2/3 of the average value
 - maximum compression stress:
 - opuka 19,0 N/mm²
 - brick 8,6 N/mm²
 - modulus of elasticity
 - opuka 2138,0 MPa
 - brick 1133,2 MPa

- laboratory tests bending test for opuka
 - determine the tensile strength
 - cutting out a rectangular specimen (distance between supports 100mm)
 - perform the bending test until the failure of the material (cracking)
 - storing the results and evaluate the tensile strength and the Young's modulus
 - result: tensile strength
 - 0.38 N/mm² 0.73 N/mm² → negligible for the calculation

- Laboratory tests moisture content
 - determine of the moisture content in the opuka and the brick
 - removing the sample for each stone type and put them into airtight bags
 - weigh the samples in the original state
 - drying the specimen in an oven (24h)
 - weigh the samples after drying
 - result: moisture content
 - opuka 2.7%
 - brick 4.1% → can be assumed as 'dry'

Analysis of defects

failures of the pillar are caused by the decrease of the column strength and modulus of elasticity of masonry elements for long-term exposure effects of humidity and climate change

Restoration of defects

- factors to be considered
 - ▶ historical building with a cultural value → minimum intervention
 - keep as much as possible from the old building/structure
 - no change of the overall impression
 - safety aspect and nowadays requirements to buildings
 - before any intervention the cause that led to the damage should be abolished (checking by monitoring of the building)
- redevelopment proposal for the optimal solution steel reinforcing
 - apply vertical reinforcement with steel bars, connected by brackets
 - set in concrete

Restoration of defects

mortar & joints repointing

- moisture prevention against rising damp
 - mechanical driving of metallic sheets
 - surface finish remedial plaster system

